
DialBB ver. 1.0 Document
Release v1.0.0

Oct 23, 2025

CONTENTS:

1 Introduction 1

2 DialBB Overview 2

3 Tutorial 3
3.1 Introduction . 3
3.2 Parrot Sample Application . 3
3.3 ChatGPT Dialogue Application . 5
3.4 Simple Application . 7
3.5 Lab Application . 16

4 Framework Specifications 21
4.1 Input and Output . 21
4.2 WebAPI . 23
4.3 Configuration . 24
4.4 How to make your own blocks . 25
4.5 Debug Mode . 26
4.6 Test Using Test Scenarios . 26

5 Built-in Block Classes 27
5.1 Simple Canonicalizer (Simple String Canonicalizer Block) . 27
5.2 LR-CRF Understander (Language Understanding Block using Logistic Regression and Conditional

Random Fields) . 28
5.3 ChatGPT Understander (Language Understanding Block using ChatGPT) 30
5.4 STN Manager (State Transition Network-based Dialogue Management Block) 32
5.5 ChatGPT Dialogue (ChatGPT-based Dialogue Block) . 43
5.6 ChatGPT NER (Named Entity Recognition Block Using ChatGPT) 45
5.7 spaCy-Based NER (Named Entity Recognizer Block using spaCy) 47

6 Appendix 49
6.1 Frontend . 49
6.2 How to Use DialBB without Installing via pip . 49
6.3 Discontinued Features . 50

i

CHAPTER

ONE

INTRODUCTION

DialBB (Dialogue System Development Framework with Building Blocks) is a framework for building dialogue sys-
tems.

Dialogue systems are constructed by integrating various technologies in the information technology field. Using this
framework, we aim to enable people with little knowledge of dialogue system technology and little experience in
information system development to construct dialogue systems and learn various information technologies. We also
aim to make DialBB easy to understand the architecture, highly extensible, and easy to read code, so that it can be used
as a teaching material for programming and system development education.

Please see the README for instructions on how to install DialBB and how to run the sample application.

DialBB is developed and copyrighted by C4A Research Institute,Inc. and reeased under Apache License 2.0.

1

https://github.com/c4a-ri/dialbb
https://github.com/c4a-ri/dialbb/blob/main/README.md
https://www.c4a.jp/en

CHAPTER

TWO

DIALBB OVERVIEW

As mentioned in the introduction, DialBB is a framework for building dialogue systems.

A framework does not stand alone as an application, but forms an application by providing data and additional programs.

The basic architecture of a DialBB application is shown below.

The main module creates and returns a system utterance by making modules called blocks sequentially process the data
(including user utterances) inputted at each turn of the dialog. The inputted is data copied to data called blackboard1

in the main block. Each block takes some of the elements of the blackboard and returns data in dictionary format.
The returned data is added to the blackboard. If an element with the same key already exists in the blackboard, it is
overwritten.

The type of block to be used is specified in the configuration file. Blocks can be either blocks provided by DialBB
(built-in blocks) or blocks created by the application developer.

The configuration file also specifies what data the main module sends to and receives from each block.

Details are explained in the “Framework Specifications” section.

1 Before ver. 0.2, it was called payload.

2

CHAPTER

THREE

TUTORIAL

3.1 Introduction

DialBB comes with several sample applications. In this chapter, we will use the English applications among them to
explain the structure of a DialBB application and the method for building an application using DialBB.

For instructions on how to run these applications, please refer to README.

3.2 Parrot Sample Application

3.2.1 Description

This is a simple application that just parrots back what the user says. It does not use any built-in block classes.

It can be found in sample_apps/parrot.

The configuration file that defines this application is located at sample_apps/parrot/config.yml, and its contents
are as follows:

blocks:
- name: parrot
block_class: parrot.Parrot
input:
input_text: user_utterance
input_aux_data: aux_data

output:
output_text: system_utterance
output_aux_data: aux_data
final: final

blocks element is a list of configurations for the blocks used in this application, referred to as block configurations.
This application uses only one block.

name specifies the name of the block. This name is used in logs.

block_class specifies the class name of the block. An instance of this class is created to exchange information with
the main module. The class name should be written as a relative path from the configuration file or from the dialbb
directory.

The block class must be a subclass of dialbb.abstract_block.AbstractBlock.

input defines how information is received from the main module. For example:

3

https://github.com/c4a-ri/dialbb

DialBB ver. 1.0 Document, Release v1.0.0

input_text: user_utteranee

This means that the blackboard['user_utterance'] in the main module can be referenced as the input_text
element in the argument (dictionary type) of the process method of the block class.

output specifies the transmission of information to the main module. For example,

output_text: system_utterance

means that blackboard['output_text'] in the main module is overwritten or appended with the output_text
element in the output (dictionary type) of the process method of the block class.

When illustrated, it looks like the following:

The symbols above the arrows connecting the main module and the block represent the keys on each side: the left side
shows the key in the blackboard of the main module, while the right side shows the key for input or output in the
block.

Additionally, by looking at sample_apps/parrot/parrot.py, you should be able to better understand the concept
of block classes in DialBB.

3.2.2 Debug Mode

By setting the environment variable DIALBB_DEBUG to yes as shown below, the log level will switch to debug mode.

export DIALBB_DEBUG=yes; python run_server.py sample_apps/parrot/config.yml

This will output detailed logs to the console, which should help deepen your understanding by observing the system’s
behavior in more detail.

3.2. Parrot Sample Application 4

DialBB ver. 1.0 Document, Release v1.0.0

3.3 ChatGPT Dialogue Application

3.3.1 Description

Using ChatGPT Dialogue (ChatGPT-based Dialogue Block), we will conduct a dialogue with OpenAI’s ChatGPT.

It can be found in sample_apps/chatgpt/.

The contents of sample_apps/chatgpt/config_en.yml are as follows.

blocks:
- name: chatgpt
block_class: dialbb.builtin_blocks.chatgpt.chatgpt.ChatGPT
input:
user_id: user_id
user_utterance: user_utterance
aux_data: aux_data

output:
system_utterance: system_utterance
aux_data: aux_data
final: final

user_name: User
system_name: System
first_system_utterance: "Hello! Let's talk about food. What kind of cuisine do you␣

→˓like?"
prompt_template: prompt_template_en.txt
gpt_model: gpt-4o-mini

The exchange of information with the main module is illustrated as follows.

In addition to input and output, several other parameters are configured as block configuration parameters.

The prompt_template specifies the template for the system prompt.

The contents of the prompt template sample_apps/chatgpt/prompt_template_en.txt are as follows.

Task Description

(continues on next page)

3.3. ChatGPT Dialogue Application 5

DialBB ver. 1.0 Document, Release v1.0.0

(continued from previous page)

- You are a dialogue system and are chatting with the user on food. Please generate next␣
→˓system utterance in less than 30 words.

Your persona

- Emma
- female
- likes chocolates and wines
- working for an IT company
- very friendly and extrovert

Situation

- You first met the user.
- The user and you are in the same age group
- The user and you talk friendly

The flow of dialogue

- Introduce each other
- Tell the user that you like Italian food
- Ask the user if se/he likes Italian food
- If the user likes Italian, ask the user which kind of Italian food she/he likes
- If the user doesn't like Italian, ask her/him why.

Dialogue up to now

@dialogue_history

The dialogue history up to that point is inserted at the end of @dialogue_history in the following format.

System: Hello! Let's talk about food. What kind of cuisine do you like?
User: I like Italian food.
System: That's awesome! Italian food is so delicious. What's your favorite dish? Pasta,␣
→˓pizza, or maybe something else?
User: I like pasta.

Here, “System” and “User” use the names specified in the configuration as user_name and system_name.

3.3.2 Creating an Application Using the ChatGPT Application

To create a new application by reusing this application, follow these steps:

• Copy the entire sample_apps/chatgpt directory. It doesn’t need to be placed within the DialBB directory; any
directory will work.

• Edit config.yml and prompt_template_en.txt. You can also rename these files if desired.

• Start the application with the following command:

export PYTHONPATH=<DialBB directory>; python run_server.py <configuration file>

3.3. ChatGPT Dialogue Application 6

DialBB ver. 1.0 Document, Release v1.0.0

3.4 Simple Application

Here is a sample application using the embedded blocks.
(As of v0.9, it has been replaced with an application that does not use Snips NLU.)

• Simple Canonicalizer (Simple String Canonicalizer Block)

• LR-CRF Understander (Language Understanding Block using Logistic Regression and Conditional Random
Fields)

• STN Manager (State Transition Network-based Dialogue Management Block)

It can be found in sample_apps/simple_ja/.

3.4.1 System Architecture

This application has the following system architecture.

This application uses the following three built-in blocks. Details on these built-in blocks are explained in Section 5.

• Simple Canonicalizer: Normalizes user input sentences (converting uppercase to lowercase, etc.).

• LR-CRF Understander Performs language understanding. It uses Logistic Regression and Conditional Random
Fields (CRF) to determine user utterance types (also known as intents) and extract slots.

• STN Manager: Manages dialogue and generates language. Dialogue management is performed using a State
Transition Network (STN), which outputs system responses.

3.4. Simple Application 7

DialBB ver. 1.0 Document, Release v1.0.0

3.4.2 Files Comprising the Application

The files that make up this application are located in the sample_apps/simple_ja directory (folder).

The sample_apps/simple_ja directory includes the following files:

• config.yml

This is the configuration file that defines the application. It specifies which blocks to use and which files each
block should load. The format of this file is explained in detail in Section 4.3.

• config_gs_template.yml

This is a template configuration file for using Google Spreadsheet instead of Excel for the knowledge needed
by the LR-CRF Understander block and the STN Manager block. You can use it by copying the file and adding
information needed to access Google Spreadsheet.

• simple-nlu-knowledge-ja.xlsx

This file contains the knowledge (language understanding knowledge) used by the LR-CRF Understander block.

• simple-scenario-ja.xlsx

This file contains the knowledge (scenario) used by the STN Manager block.

• scenario_functions.py

This is a program used by the STN Manager block.

• test_inputs.txt

This is the test scenario used for system testing.

3.4.3 LR-CRF Understander Block

Language Understanding Result

The LR-CRF Understander block analyzes the input utterance and outputs the language understanding result.
The language understanding result consists of a type and a set of slots.

For example, the language understanding result for “I like roast beef sandwiches” would be as follows.

{
"type": "tell-like-specific-sandwich",
"slots": {
"favorite-sandwich": "roast beef sandwich"

}
}

The phrase is categorized under the type "tell-like-specific-sandwich", and the slot "favorite-sandwich"
has the value "roast beef sandwich". There may be utterances that contain multiple slots as well.

3.4. Simple Application 8

DialBB ver. 1.0 Document, Release v1.0.0

NLU Knowledge

The language understanding knowledge used by the LR-CRF Understander block is written in the
simple-nlu-knowledge-en.xlsx file. For details on the description method of this language understanding
knowledge, refer to nlu_knowledge. Below is a brief explanation.

The language understanding knowledge consists of the following two sheets:

Sheet Name Content
utterances Examples of utterances for each type and the slots that should be extracted from those utterances
slots Relationship between slots and entities

Here is an excerpt from the utterances sheet.

flag type utterance slots
Y yes yes

Y yes yeah

Y tell-like-specific-
sandwich

I like roast beef sandwiches favorite-sandwich=roast beef sand-
wiches

Y tell-like-specific-
sandwich

chicken salad sandwiches are my fa-
vorite

favorite-sandwich=chicken salad sand-
wiches

The first row indicates that the type of “yes” is “yes”, and it has no slots. The language understanding result for “yes”
would be as follows:

{
"type": "yes"

}

The language understanding result for “chicken salad sandwiches are my favorite” would be as follows:

{
"type": "tell-like-specific-sandwich",
"slots": {
"favorite-sandwich": "chicken salad sadwiches"

}
}

The flag column is used to specify in the configuration whether or not to use that row.

Next, here is a portion of the contents from the slots sheet.

flag slot name entity synonyms
Y favorite-sandwich roast beef sandwich roast beef, roast beef sandwiches
Y favorite-sandwich egg salad sandwich egg salad sandwiches, Egg Salad

The slot name column indicates the slot name, entity specifies the slot value, and synonyms lists synonyms for
that value.

3.4. Simple Application 9

DialBB ver. 1.0 Document, Release v1.0.0

For example, the first row indicates that if values like roast beef or roast beef sandwiches are obtained as
slot values for the slot favorite-sandwich , they will be replaced with roast beef sandwich in the language
understanding result.

Construction and Use of Language Understanding Models

When the application is launched, models based on logistic regression and conditional random fields (CRFs) are created
using the aforementioned knowledge and are utilized during runtime.

3.4.4 STN Manager Block

Overview

The STN Manager block performs dialogue management and language generation using a State-Transition Network
(STN). The State-Transition Network is also referred to as a “scenario.” The scenario is documented on the scenario
sheet within the simple-scenario-ja.xlsx file. For details on how to write this sheet, please refer to Section 5.4.2.

Scenario Description

A portion of the scenario description is provided below.

flag state system utter-
ance

user ut-
terance
example

user ut-
terance
type

conditions actions next
state

Y like-
sandwich

what kind of
sandwich do
you like?

I like egg
salad sand-
wiches.

tell-like-
specific-
sandwich

_eq(#favorite-
sandwich, “egg
salad sandwich”)

_set(&topic_sandwich,
#favorite-
sandwich)

egg-
salad-
sandwich

Y like-
sandwich

I like roast
beef sand-
wiches.

tell-like-
specific-
sandwich

is_known_sandwich(#favorite-
sandwich)

_set(&topic_sandwich,#favorite-
sandwich)

known-
sandwich

Y like-
sandwich

I like tomato
and egg
sandwich.

tell-like-
specific-
sandwich

is_novel_sandwich(#favorite-
sandwich)

new-
sandwich

Y like-
sandwich

Any sand-
wich is fine
with me.

#final

Each row represents a single transition.

The flag column, similar to the language understanding knowledge, specifies whether that row will be used based on
the configuration.

The state column contains the name of the initial state, and the next state column contains the name of the desti-
nation state.

The system utterance column contains the system’s response output in that state. This response is linked to the
value in the state column on the left, regardless of the transition in that row.

The user utterance example column provides an example of the expected user response for that transition. This
example is not actually used in practice.

The user utterance type and conditions columns specify the conditions for the transition. The conditions for a
transition are satisfied under the following conditions:

3.4. Simple Application 10

DialBB ver. 1.0 Document, Release v1.0.0

• The user utterance type column is empty, or the value in the user utterance type column matches the
user utterance type of the language understanding result, and

• The conditions column is empty, or all conditions listed in the conditions column are satisfied.

These conditions are checked sequentially, starting from the topmost transition.

A row with both an empty user utterance type and an empty conditions column is referred to as a default
transition. Generally, each state requires one default transition, which should be positioned at the bottom among the
rows originating from that state.

Conditions

The conditions column contains a list of function calls representing specific conditions. If multiple function calls
are present, they are separated by ;.

The functions in the conditions column, known as condition functions, each return either True or False. When all
function calls return True, the condition is considered satisfied.

Functions beginning with _ are built-in functions. Other functions, defined in scenario_functions.py for this
application, are custom functions created by developers.

The _eq function is a built-in function that returns True if two arguments contain the same string.

Arguments beginning with #, like #favorite_sandwich, are special arguments. For example, # followed by the name
of a slot in the language understanding result denotes the value of the slot. #favorite_sandwich is the value of the
#favorite_sandwich slot.

The values of the arguments enclosed by "" like "tuna sandwich" are the enclosed strings.

_eq(#favorite_sandwich, "tuna sandwich") returns True when the favorite-sandwich slot value is tuna
sandwich.

The function is_known_ramen(#favorite_sandwich) is defined in scenario_functions.py so that it returns
True when the system recognizes the value in the favorite-sandwich slot and returns False otherwise.

Condition functions can access data known as context information which is a dictionary-type data structure. Keys can
be added to this structure within the condition or action functions. Some keys are pre-set with values, as detailed in the
reference section {numref}context_information.

Actions

The actions column specifies the processes to be executed when a transition in that row occurs. It lists function calls;
if there are multiple function calls, they are separated by ;.

Functions used in the actions column are called action functions, and they do not return any values.

Similar to condition functions, functions that start with an underscore (_) are built-in functions. Other functions are
custom functions created by the developer and are defined in scenario_functions.py for this application.

The _set function assigns the value of the second argument to the first argument. For instance,
_set(&topic_sandwich, #favorite-sandwich) assigns the value of the #favorite-sandwich slot to the
topic_sandwich key in the context information. Context information values can be accessed within conditions and
actions by referencing *<key name>.

is_known_sandwich(#favorite-sandwich) is an example of a developer-defined function. This function, defined
in scenario_functions.py, judges whether the value of the favorite-sandwich slot of the language understand-
ing result is one of the sandwiches that the system knows using its known sandwich list.

3.4. Simple Application 11

DialBB ver. 1.0 Document, Release v1.0.0

Summary of Transition Description

To summarize, in the first row, when the state is like-sandwich, the system utters, “what kind of sand-
wich do you like?”. If the type of the user’s next utterance, as determined by language understanding, is
tell-like-specific-sandwich, and the value of the favorite-sandwich slot is egg salad sandwich , then
the conditions are met, and the transition occurs. The value of the favorite-sandwich slot, i.e., egg salad
sandwich, is then set as the value for topic_sandwich in the context information, and the state changes to
egg-salad-sadwich. If the conditions are not met, the conditions for the second row are checked.

A diagram would illustrate this as follows:

3.4. Simple Application 12

DialBB ver. 1.0 Document, Release v1.0.0

Special State Names

There are some special state names used in the system:

• #prep: This is the state before the dialogue begins. After the session starts, condition checks and actions are
executed in this state.

• #initial: This state generates the first user prompt.

• States with names starting with #final are final states. They set the final value in the block’s output to True,
indicating the end of the dialogue.

• #error: This state is used when an internal error occurs. It also sets final to True in the block’s output,
signaling the end of the dialogue.

Scenario Graph

If Graphviz is installed, the application will output a graph (_scenario_graph.jpg) upon startup. This graph, or
scenario graph, utilizes the system utterances from the system utterance column and the example user utterances
from the user utterance example column to illustrate the dialogue flow. Below is the scenario graph for this
application.

3.4. Simple Application 13

DialBB ver. 1.0 Document, Release v1.0.0

3.4. Simple Application 14

DialBB ver. 1.0 Document, Release v1.0.0

3.4.5 Utilizing N-Best Language Understanding Results

In this application, the LR-CRF language understanding block is set to output a 5-Best list of understanding results.
This is specified by the num_candidates element in the configuration file.

blocks: # bclock list
-
- name: understander
....
num_candidates: 3

-

In the STN Manager block, when checking the conditions for a transition, it examines the top language understanding
results in order. If it finds a result that satisfies the conditions, it uses that result to execute the corresponding action
and transitions to the next state.

3.4.6 Building an Application Using a Simple Application Structure

Overview

This section explains how to construct an application using a simple application structure, similar to the method in
Section 3.3.2.

• Copy the Application Directory
Copy the sample_apps/simple_ja directory as a whole. You can place it in any directory unrelated to the
DialBB directory.

• Edit Each File
You may edit each of the files in the directory as needed. Renaming the files is also permitted.

• Run the Application
Start the application with the following command:

export PYTHONPATH=<DialBB directory>;python run_server.py <configuration file>

Files to Modify

• simple-nlu-knowledge-ja.xlsx

Edit this file to adjust the knowledge used in the LR-CRF language understanding block.

• simple-scenario-ja.xlsx

Modify this file to update the scenario.

• scenario_functions.py

Define the functions (conditional functions and action functions) that are added to the scenario in this file (see
custom_functions).

In each function definition, include an additional argument representing context information, typically defined
as context: Dict[str, Any]. Context information encompasses both pre-registered data and data added
during interaction by action functions. For further details, refer to Section 5.4.4.

• config.yml

Modifications to this file are generally unnecessary if only basic functionality is being used.

3.4. Simple Application 15

DialBB ver. 1.0 Document, Release v1.0.0

3.5 Lab Application

3.5.1 Overview

It is based on language understanding by ChatGPT and network-based dialogue management, incorporating various
functionalities of embedded blocks. The following embedded blocks are used:

• Simple Canonicalizer (Simple String Canonicalizer Block)

• ChatGPT Understander (Language Understanding Block using ChatGPT)

• ChatGPT NER (Named Entity Recognition Block Using ChatGPT)

• STN Manager (State Transition Network-based Dialogue Management Block)

The main differences from simple applications are the use of the ChatGPT language understanding block and the
ChatGPT named entity recognition block, as well as the advanced functionalities of the STN Manager block.

3.5.2 Files Comprising the Application

The files that make up this application are located in the sample_apps/simple_ja directory. This directory includes
the following files:

• config.yml

This is a configuration file that defines the application.

• lab_app_nlu_knowledge_en.xlsx

This file contains the knowledge used by the ChatGPT Language Understanding Block.

• lab_app_scenario_en.xlsx

This file contains the knowledge used by the STN Manager Block.

• scenario_functions.py

This is a program used within the STN Manager Block.

• test_requests.json

This file contains test requests (refer to test_requests).

3.5.3 ChatGPT Language Understanding Block

Language understanding is conducted using ChatGPT in JSON mode. For this purpose, knowledge formatted in the
same way as that used by the LR-CRF language understanding block is utilized. This knowledge is applied through
few-shot learning to perform language understanding on the input text. The input and output of the LR-CRF language
understanding block are also the same.

The specific GPT model for this process is defined in the block configuration under gpt_model.

The default prompt template is used for prompting ChatGPT to conduct language understanding. For further details,
please refer to chatgpt_understander_params.

3.5. Lab Application 16

DialBB ver. 1.0 Document, Release v1.0.0

3.5.4 ChatGPT Named Entity Recognition (NER) Block

The ChatGPT Named Entity Recognition (NER) block performs named entity extraction using ChatGPT. The extracted
results are returned in the aux_data field of the block’s output. Below is an example:

{"NE_person": "John", "NE_Location": "Los Angels"}

Person and Location are named entity classes defined in the named entity recognition knowledge, which will
be explained below. These results can be accessed within the STN Manager block using special variables such as
#NE_person and #NE_Location.

Named Entity Recognition Knowledge

The knowledge used by the ChatGPT NER block is written in the simple-ner-knowledge-ja.xlsx file. For details
on the description method of NER knowledge, refer to chatgpt_ner_knowledge. A brief explanation is provided
below.

Named entity extraction knowledge consists of the following two sheets:

Sheet Name Description
utterances Example utterances and the named entities that should be extracted from them
classes Descriptions of named entity classes and examples of named entities for each class

Below is a partial example of the utterances sheet:

flag utterance entities
Y New York location=New York
Y Candy likes tuna sandwiches person=Candy
Y Tom White lives in LA person=Tom White, location=LA

• The flag column is used to configure whether the row should be used.

• The utterance column contains example utterances.

• The entities column lists the slots contained in the utterance in the format <Entity Class>=<Entity>,
..., <Entity Class>=<Entity>. Commas can be full-width or punctuation marks.

Below is an example of the classes sheet. Each named entity class is described in one row.

flag class explanation examples
Y person person name Daniel, Mr. Green, Dr. Morgan, Becky, Karen Chu
Y location location name Dallas, New Jersey, Washington DC, Japan, Europe

• The flag column is the same as in the utterances sheet.

• The class column specifies the named entity class.

• The explanation column describes the named entity.

• The examples column provides examples of named entities in the class, separated by commas or punctuation
marks.

3.5. Lab Application 17

DialBB ver. 1.0 Document, Release v1.0.0

3.5.5 Functions of the STN Manager

In the experimental application, the following STN Manager functions, which are not used in the simple application,
are utilized.

Function Calls and Special Variable References in System Utterances

In the simple application, only context information variables were embedded in system utterances. However, it is also
possible to embed function calls and special variables.

For example:

I'm {get_system_name()}. If you don't mind, could you tell me your name?

In this case, the function get_system_name(context), defined in scenario_functions.py, is called, and its
return value (a string) replaces {get_system_name()}. This function is designed to return the value of system_name
specified in the configuration file.

Another example:

Thank you {#NE_person}! Let me ask you about sandwich. Do you have sandwiches very often?

Here, {#NE_person} is replaced by the value of the special variable #NE_person. #NE_person corresponds to the
value of NE_person in aux_data, meaning it holds the value of the “Person” entity extracted by the named entity
recognition block.

Syntax Sugar

Syntax sugar is provided to simplify the notation for calling built-in functions within the scenario. For instance,
confirmation_request="Sorry to ask you again, but do you often eat sadwiches?" is equiv-
alent to writing _set(&confirmation_request, "Sorry to ask you again, but do you often eat
sadwiches?").

Similarly:

• #favorite-sandwich=="egg salad sandwich" is equivalent to _eq(#favorite-sandwich, "egg
salad sandwich")

• #NE_person!="" is equivalent to _ne(#NE_Preson, "")

This shorthand makes the scenario scripting more concise and easier to read.

Reaction Utterance Generation

In the actions section of the scenario, there is _reaction="Great!". _reaction is a special variable in the context
information that appends its value to the beginning of the next system utterance. For example, if the scenario transitions
to a state called like-sandwich after this, the system utterance what kind of sandwich do you like?will have
Great! added at the start, resulting in Great! what kind of sandwich do you like?.

By including such reactions, the system can acknowledge the user’s previous input, enhancing the user experience by
conveying that it is actively listening to what the user is saying.

3.5. Lab Application 18

DialBB ver. 1.0 Document, Release v1.0.0

Utterance Generation and Condition Evaluation Using ChatGPT

In a system utterance, the notation $"Generate a sentence to say it's time to end the talk
by continuing the conversation in 50 words" is syntax sugar for the built-in function call
_check_with_llm("Generate a sentence to say it's time to end the talk by continuing the
conversation in 50 words"), which uses ChatGPT to generate an utterance.

Similarly, in the conditions section, the notation $"Please determine if the user said the reason"
is syntax sugar for the built-in function call _check_with_llm("Please determine if the user said the
reason"). This uses ChatGPT to evaluate the conversation history and returns a Boolean value indicating whether the
user provided a reason.

The specific ChatGPT model, temperature parameter, context setting, and persona for utterance generation are specified
in the block configuration as follows:

chatgpt:
gpt_model: gpt-4o-mini
temperature: 0.7
situation:

- You are a dialogue system and chatting with the user.
- You met the user for the first time.
- You and the user are similar in age.
- You and the user talk in a friendly manner.

persona:
- Your name is Yui
- 28 years old
- Female
- You like sweets
- You don't drink alcohol
- A web designer working for an IT company
- Single
- You talk very friendly
- Diplomatic and cheerful

Sub-dialogue

The next state field contains #gosub:confirmation-requested:confirmed-if-have-sandwich, which indi-
cates that after transitioning to the confirmation_requestedstate and conducting a dialogue, the conversation will
return to the confirmed-if-have-sandwichstate. A conversation starting from the confirmation_requested
state is called a sub-dialogue. When the sub-dialogue transitions to the #exit state, it exits the sub-dialogue and goes
to the ``confirmed-if-have-sandwich` state.

By setting up reusable dialogues as sub-dialogues for various situations that require user confirmation, you can reduce
the amount of scenario writing required.

3.5. Lab Application 19

DialBB ver. 1.0 Document, Release v1.0.0

Skip Transition

When $skip is placed in the system utterance field, no system utterance is returned, and the system immediately moves
to the next transition after evaluating conditions. This is useful when you want to determine the next transition based
on the outcome of an action.

Repeat Function

The repeat_when_no_available_transitions option is specified in the block configuration. When this is en-
abled, if there are no transitions that satisfy the conditions, it returns to the original state and repeats the same utterance.
In this case, it’s acceptable to have states without default transitions. In this application, the like-sandwich state lacks
a default transition, so if an unrelated utterance is made in this state, the same system utterance will be repeated.

Handling Voice Input

The STN Manager includes functionality to handle voice input, which can be utilized by configuring it in the block
configuration. In this application, it is set up as follows:

input_confidence_threshold: 0.5
confirmation_request:
function_to_generate_utterance: generate_confirmation_request
acknowledgement_utterance_type: "yes"
denial_utterance_type: "no"

#utterance_to_ask_repetition: "could you say that again?"
ignore_out_of_context_barge_in: yes
reaction_to_silence:
action: repeat

Please refer to handling_speech_input for the meanings.

The file test_requests.json contains examples of inputs that support speech input.

3.5. Lab Application 20

CHAPTER

FOUR

FRAMEWORK SPECIFICATIONS

This section describes the specifications of DialBB as a framework.

We assume that the reader has knowledge of Python programming.

4.1 Input and Output

The main module of DialBB has the class API (method call), which accepts user utterance and auxiliary information
in JSON format and returns system utterance and auxiliary information in JSON format.

The main module works by calling blocks in sequence. Each block receives data formatted in JSON (Python dictionary
type) and returns the data in JSON format.

The class and input/output specifications of each block are specified in the configuration file for each application.

4.1.1 The DialogueProcessor Class

The application is built by creating an object of class dialbb.main.DialogueProcessor

This is done by the following procedure.

• It is assumed that DialBB is installed via pip according to the GitHub README, or that dialbb is in the module
search path.

• In the application that uses DialBB, use the following DialogueProcessor and calls process method.

from dialbb.main import DialogueProcessor
dialogue_processor = DialogueProcessor(<configuration file> <additional␣
→˓configuration>)
response = dialogue_processor.process(<request>, initial=True) # at the start of a␣
→˓dialogue session
response = dialogue_processor.process(<request>) # when session continues

<additional configuration> is data in dictionary form, where keys must be a string, such as

{
"<key1>": <value1>,
"<key2>": <value2>,
...

}

21

DialBB ver. 1.0 Document, Release v1.0.0

This is used in addition to the data read from the configuration file. If the same key is used in the configuration
file and in the additional configuration, the value of the additional configuration is used.

<request> and response are dictionary type data, described below.

Note that DialogueProcessor.process is not thread safe.

4.1.2 Request

At the start of the session

JSON in the following form.

{
"user_id": <user id: string>,
"aux_data": <auxiliary data: object (types of values are arbitrary)>}

}

• user_id is mandatory and aux_data is optional

• <user id> is a unique ID for a user. This is used for remembering the contents of previous interactions when
the same user interacts with the application multiple times.

• <auxiliary data> is used to send client status to the application. It is an JSON object and its contents are
decided on an application-by-application basis.

After the session starts

JSON in the following form.

{
"user_id": <user id: string>,
"session_id": <session id: string>,
"user_utterance": <user utterance string: string>,
"aux_data": <auxiliary data: object (types of values are arbitrary)>

}

• user_id, session_id, and user_utterance are mandatory, and aux_data is optional.

• <session id> is the session ID included in the responses.

• <user utterance string> is the utterance made by the user.

4.1.3 Response

{
"session_id":<session id: string>,
"system_utterance": <system utterance string: string>,
"user_id":<user id: string>,
"final": <end-of-dialogue flag: bool>
"aux_data": <auxiliary data: object (types of values are arbitrary)>

}

• <session id> is the ID of the dialog session. A new session ID is generated when new session starts.

4.1. Input and Output 22

DialBB ver. 1.0 Document, Release v1.0.0

• <system utterance string> is the utterance of the system.

• <user id> is the ID of the user sent in the request.

• <end-of-dialog flag> is a boolean value indicating whether the dialog has ended or not.

• <auxiliary data> is data that the application sends to the client. It is used to send information such as server
status.

4.2 WebAPI

Applications can also be accessed via WebAPI.

4.2.1 Server Startup

It is assumed that DialBB is installed via pip according to the GitHub README.

Start the server by specifying a configuration file.

$ dialbb-server [--port <port>] <config file>

The default port number is 8080.

4.2.2 Connection from Client (At the Start of a Session)

• URI

http://<server>:<port>/init

• Request header

Content-Type: application/json

• Request body

The data is in the same JSON format as the request in the case of the class API.

• Response

The data is in the same JSON format as the response in the case of the class API.

4.2.3 Connection from Client (After the Session Started)

• URI

http://<server>:<port>/dialogue

• request header

Content-Type: application/json

• request body

The data is in the JSON format as the request in the case of the class API.

4.2. WebAPI 23

DialBB ver. 1.0 Document, Release v1.0.0

• response

The data is in the same JSON format as the response in the case of the class API.

4.3 Configuration

The configuration is data in dictionary format and is assumed to be provided with a yaml file.

Only the blocks element is required for configuration; the blocks element is a list of what each block specifies (this is
called the block configuration) and has the following form

blocks:
- <Block Configuration>
- <Block Configuration>
...
- <Block Configuration>

The following are the mandatory elements of each block configuration.

• name

Name of the block. Used in the log.

• block_class

The class name of the block. This should be written as a realtive path from a module search path (an element of
sys.path. Paths set to PYTHONPATH environment variable are included in it).

The directory containing the configuration files is automatically registered in the path (an element of sys.path)
where the module is searched.

Built-in classes should be specified in the form dialbb.built-in_blocks.<module name>.<class
name>. Relative paths from dialbb.builtin_blocks are also allowed, but are deprecated.

• input

This defines the input from the main module to the block. It is a dictionary type data, where keys are used for
references within the block and values are used for references in the blackboard (data stored in the main module).
For example, if the following is in a block configuration, then what can be referenced by input['sentence']
in the block is blackboard['canonicalized_user_utterance'] in the main module.

input:
sentence: canonicalized_user_utterance

If the specified key is not in the blackboard, the corresponding element of the input becomes None.

• output

Like input, it is data of dictionary type, where keys are used for references within the block and values are used
for references on the blackboard. If the following is specified:

output:
output_text: system_utterance

and if the output from the block is output, then the following process is performed.

blackboard['system_utterance'] = output['output_text']

If blackboard already has system_utterance as a key, the value is overwritten.

4.3. Configuration 24

DialBB ver. 1.0 Document, Release v1.0.0

4.4 How to make your own blocks

Developers can create their own blocks.

The block class must be a descendant of diabb.abstract_block.AbstractBlock.

4.4.1 Methods to be Implemented

• __init__(self, *args)

Constructor. It is defined as follows:

def __init__(self, *args):

super().__init__(*args)

<Process unique to this block>

• process(self, input: Dict[str, Any], session_id: str = False) -> Dict[str, Any]

Processes input and returns output. The relationship between input, output and the main module’s blackboard is
defined by the configuration (see “Configuration”). session_id is a string passed from the main module that
is unique for each dialog session.

4.4.2 Available Variables

• self.config (dictionary)

This is a dictionary type data of the contents of the configuration. By referring to this data, it is possible to read
in elements that have been added by the user.

• self.block_config (dictionary)

The contents of the block configuration are dictionary type data. By referring to this data, it is possible to load
elements that have been added independently.

• self.name (string)

The name of the block as written in the configuration.

• self.config_dir (string)

The directory containing the configuration files. It is sometimes called the application directory.

4.4.3 Available Methods

The following logging methods are available

• log_debug(self, message: str, session_id: str="unknown")

Outputs debug-level logs to standard error output. session_id can be specified as a session ID to be included
in the log.

• log_info(self, message: str, session_id: str="unknown")

Outputs info level logs to standard error output.

4.4. How to make your own blocks 25

DialBB ver. 1.0 Document, Release v1.0.0

• log_warning(self, message: str, session_id: str="unknown")

Outputs warning-level logs to standard error output.

• log_error(self, message: str, session_id: str="unknown")

Outputs error-level logs to standard error output.

4.5 Debug Mode

When the environment variable DIALBB_DEBUG is set to yes (case-insensitive) during Python startup, the program
runs in debug mode. In this case, the value of dialbb.main.DEBUG is True. This value can also be referenced in
blocks created by the application developer.

If dialbb.main.DEBUG is True, the logging level is set to debug; otherwise it is set to info.

4.6 Test Using Test Scenarios

The following commands can be used to test with test scenarios.

$ python dialbb/util/test.py <application configuration> \
<test scenario> [--output <output file>]

The test scenario is a text file in the following format:

<session separation>
System: <system utterance>
User: <user utterance>
System: <system utterance>
User: <user utterance>
...
System: <system utterance>
User: <user utterance>
System: <system utterance>
<session separation>
<System: <system utterance>
User: <user utterance>
System: <system utterance>
User: <user utterance>
...
System: <system utterance>
User: <user utterance>
System: <system utterance>
<session separation>
...

<session separation> is a string stareging with ----init.

The test script receives system utterance by inputting <user speech> to the application in turn. If the system utterances
differ from the script’s system utterances, a warning is issued. When the test is finished, the dialogues can be output in
the same format as the test scenario, including the output system utterances. By comparing the test scenario with the
output file, changes in responses can be examined.

4.5. Debug Mode 26

CHAPTER

FIVE

BUILT-IN BLOCK CLASSES

Built-in block classes are block classes that are included in DialBB in advance.

Below, the explanation of the blocks that deal with only Japanese is omitted.

5.1 Simple Canonicalizer (Simple String Canonicalizer Block)

(dialbb.builtin_blocks.preprocess.simple_canonicalizer.SimpleCanonicalizer)

Canonicalizes user input sentences. The main target language is English.

5.1.1 Input/Output

• Input

– input_text: Input string (string)

∗ Example: “I like ramen”.

• Output

– output_text: string after normalization (string)

∗ Example: “i like ramen”.

5.1.2 Process Details

Performs the following processing on the input string.

• Deletes leading and tailing spaces.

• Replaces upper-case alphabetic characters with lower-case characters.

• Deletes line breaks.

• Converts a sequence of spaces into a single space.

27

DialBB ver. 1.0 Document, Release v1.0.0

5.2 LR-CRF Understander (Language Understanding Block using Lo-
gistic Regression and Conditional Random Fields)

(dialbb.builtin_blocks.understanding_with_lr_crf.lr_crf_understander.Understander)

Determines the user utterance type (also called intent) and extracts the slots using logistic regression and conditional
random fields.

Performs language understanding in Japanese if the language element of the configuration is ja, and language under-
standing in English if it is en.

At startup, this block reads the knowledge for language understanding written in Excel and trains the models for logistic
regression and conditional random fields.

At runtime, it uses the trained models for language understanding.

5.2.1 Input/Output

• input

– tokens: list of tokens (list of strings)

∗ Example: ['I' 'like', 'chicken', 'salad' 'sandwiches'].

• output

– nlu_result: language understanding result (dict or list of dict)

∗ If the parameter num_candidates of the block configuration described below is 1, the language un-
derstanding result is a dictionary type in the following format.

{
"type": <user utterance type (intent)>,.
"slots": {<slot name>: <slot value>, ... , <slot name>: <slot value>}

}

The following is an example.

{
"type": "tell-like-specific-sandwich",
"slots": {"favorite-sandwich": "roast beef sandwich"}

}

∗ If num_candidates is greater than 1, it is a list of multiple candidate comprehension results.

[{"type": <user utterance type (intent)>,
"slots": {<slot name>: <slot value>, ... , <slot name>: <slot value>}},␣

→˓...
{"type": <user utterance type (intent)>,.
"slots": {<slot name>: <slot value>, ... , <slot name>: <slot value>}},␣

→˓...
....]

5.2. LR-CRF Understander (Language Understanding Block using Logistic Regression and
Conditional Random Fields)

28

DialBB ver. 1.0 Document, Release v1.0.0

5.2.2 Block Configuration Parameters

• knowledge_file (string)

Specifies the Excel file that describes the knowledge. The file path must be relative to the directory where the
configuration file is located.

• flags_to_use (list of strings)

Specifies the flags to be used. If one of these values is written in the flag column of each sheet, it is read. If
this parameter is not set, all rows are read.

• canonicalizer

Specifies the canonicalization information to be performed when converting language comprehension knowledge
to Snips training data.

– class

Specifies the class of the normalization block. Basically, the same normalization block used in the appli-
cation is specified.

• num_candidates (integer. Default value is 1)

Specifies the maximum number of language understanding results (n for n-best).

• knowledge_google_sheet (hash)

– This specifies information for using Google Sheets instead of Excel.

∗ sheet_id (string)

Google Sheet ID.

∗ key_file(string)

Specify the key file to access the Google Sheet API as a relative path from the configuration file direc-
tory.

5.2.3 Language Understanding Knowledge

Language understanding knowledge consists of the following two sheets.

sheet name contents
utterances examples of utterances by type
slots relationship between slots and entities and a list of synonyms

The sheet name can be changed in the block configuration, but since it is unlikely to be changed, a detailed explanation
is omitted.

5.2. LR-CRF Understander (Language Understanding Block using Logistic Regression and
Conditional Random Fields)

29

DialBB ver. 1.0 Document, Release v1.0.0

utterances sheet

Each row consists of the following columns

• flag

Flags to be used or not. Y (yes), T (test), etc. are often written. Which flag’s rows to use is specified in the
configuration. In the configuration of the sample application, all rows are used.

• type

User utterance type (Intent)

• utterance

Example utterance.

• slots

Slots that are included in the utterance. They are written in the following form

<slot name>=<slot value>, <slot name>=<slot value>, ... <slot name>=<slot value>

The following is an example.

location=philladelphia, favorite-sandwich=cheesesteak sandwitch

The sheets that this block uses, including the utterance sheets, can have other columns than these.

slots sheet

Each row consists of the following columns.

• flag

Same as on the utterance sheet.

• slot name

Slot name. It is used in the example utterances in the utterances sheet. Also used in the language understanding
results.

• entity

The name of the dictionary entry. It is also included in language understanding results.

• synonyms

Synonyms joined by ','.

5.3 ChatGPT Understander (Language Understanding Block using
ChatGPT)

(dialbb.builtin_blocks.understanding_with_chatgpt.chatgpt_understander.Understander)

Determines the user utterance type (also called intent) and extracts the slots using OpenAI’s ChatGPT.

Performs language understanding in Japanese if the language element of the configuration is ja, and language under-
standing in English if it is en.

5.3. ChatGPT Understander (Language Understanding Block using ChatGPT) 30

DialBB ver. 1.0 Document, Release v1.0.0

At startup, this block reads the knowledge for language understanding written in Excel, and converts it into the list of
user utterance types, the list of slots, and the few shot examples to be embedded in the prompt.

At runtime, input utterance is added to the prompt to make ChatGPT perform language understanding.

5.3.1 Input/Output

• input

– input_text: input string

The input string is assumed to be canonicalized.

∗ Example: "I like chicken salad sandwiches".

• output

– nlu_result: language understanding result (dict)

```json
{

"type": <user utterance type (intent)>,.
"slots": {<slot name>: <slot value>, ... , <slot name>: <slot value>}

}
```

The following is an example.

```json
{

"type": "tell-like-specific-sandwich",
"slots": {"favorite-sandwich": "roast beef sandwich"}

}
```

5.3.2 Block Configuration Parameters

• knowledge_file (string)

Specifies the Excel file that describes the knowledge. The file path must be relative to the directory where the
configuration file is located.

• flags_to_use (list of strings)

Specifies the flags to be used. If one of these values is written in the flag column of each sheet, it is read. If
this parameter is not set, all rows are read.

• canonicalizer

Specifies the canonicalization information to be performed when converting language comprehension knowledge
to Snips training data.

– class

Specifies the class of the normalization block. Basically, the same normalization block used in the appli-
cation is specified.

• knowledge_google_sheet (hash)

5.3. ChatGPT Understander (Language Understanding Block using ChatGPT) 31

DialBB ver. 1.0 Document, Release v1.0.0

– This specfies information for using Google Sheet instead of Excel.

∗ sheet_id (string)

Google Sheet ID.

∗ key_file (string)

Specify the key file to access the Google Sheet API as a relative path from the configuration file direc-
tory.

• gpt_model (string. The default value is gpt-4o-mini.)

Specifies the ChatGPT model. gpt-4o can be specified. gpt-4 cannot be used.

• prompt_template

This specifies the prompt template file as a relative path from the configuration file directory.

When this is not specified, dialbb.builtin_blocks.understanding_with_chatgpt.
prompt_templates_ja .PROMPT_TEMPLATE_JA (for Japanese) or dialbb.builtin_blocks.
understanding_with_chatgpt.prompt_templates_en .PROMPT_TEMPLATE_EN (for English) is used.

A prompt template is a template of prompts for making ChatGPT language understanding, and it can contain the
following variables starting with @.

– @types The list of utterance types.

– @slot_definitions The list of slot definitions.

– @examples So-called few shot examples each of which has an utterances example, its utterance type, and
its slots.

– @input input utterance.

Values are assigned to these variables at runtime.

5.3.3 Language Understanding Knowledge

The description format of the language understanding knowledge in this block is exactly the same as that of the LR-CRF
Understander. For more details, please refer to “Language Understanding Knowledge” in the explanation of LR-CRF
Understander.

5.4 STN Manager (State Transition Network-based Dialogue Manage-
ment Block)

(dialbb.builtin_blocks.stn_manager.stn_management)

It perfomrs dialogue management using a state-transition neetwork.

• input

– sentence: user utterance after canonicalization (string)

– nlu_result: language understanding result (dictionary or list of dictionaries)

– user_id: user ID (string)

– aux_data: auxiliary data (dictionary) (not required, but specifying this is recommended)

• output

5.4. STN Manager (State Transition Network-based Dialogue Management Block) 32

DialBB ver. 1.0 Document, Release v1.0.0

– output_text: system utterance (string)

Example:

"So you like chiken salad sandwiches."

– final: a flag indicating whether the dialog is finished or not. (bool)

– aux_data: auxiliary data (dictionary type)

The auxiliary data of the input is updated in action functions described below, including the ID of the
transitioned state. Updates are not necessarily performed in action functions. The transitioned state is
added in the following format.

{"state": "I like a particular ramen" }

5.4.1 Block configuration parameters

• knowledge_file (string)

Specifies an Excel file describing the scenario. It is a relative path from the directory wherer the configuration
file exists.

• function_definitions (string)

The name of the module that defines the scenario function (see dictionary_function). If there are multiple mod-
ules, connect them with ':'. The module must be in the Python module search path. (The directory containing
the configuration file is in the module search path.)

• flags_to_use (list of strings)

Same as the Snips Understander.

• knowledge_google_sheet (object)

Same as the Snips Understander.

• scenario_graph: (boolean. Default value is False)

If this value is true, the values in the system utterance and user utterance example columns of the
scenario sheet are used to create the graph. This allows the scenario writer to intuitively see the state transition
network.

• repeat_when_no_available_transitions (Boolean. Default value is false)

When this value is true, if there is no transition that matches the condition, the same utterance is repeated
without transition.

• multi_party (Boolean. Deafault value is false)

When this value is set to true, the value of user_id is included in the conversation history for Section 5.4.4
and in the prompts for built-in functions using large language models described in llm_functions.

5.4. STN Manager (State Transition Network-based Dialogue Management Block) 33

DialBB ver. 1.0 Document, Release v1.0.0

5.4.2 Dialogue Management Knowledge Description

The dialog management knowledge (scenario) is written in the scenario sheet in the Excel file.

Each row of the sheet represents a transition. Each row consists of the following columns

• flag

Same as on the utterances sheet.

• state

The name of the source state of the transition.

• system utterance

Candidates of the system utterance generated in the state state.

The {<variable>} or {<function call>} in the system utterance string is replaced by the value assigned
to the variable during the dialogue or the return value of the function call. This will be explained in detail in
“Variables and Function Calls in System Utterances”.

There can be multiple lines with the same state, but all system utterance in the lines having the same state
become system utterance candidates, and will be chosen randomely.

• user utterance example

Example of user utterance. It is only written to understand the flow of the dialogue, and is not used by the system.

• user utterance type

The user utterance type obtained by language understanding. It is used as a condition of the transition.

• conditions

Condition (sequence of conditions). A function call that represents a condition for a transition. There can
be more than one. If there are multiple conditions, they are concatenated with ';'. Each condition has the
form <function name>(<argument 1>, <argument 2>, ..., <argument n>). The number of argu-
ments can be zero. See Function arguments for the arguments that can be used in each condition.

• actions

A sequece of actions, which are function calls to execute when the transition occurs. If there is more than one,
they are concatenated with ;. Each condition has the form <function name>(<argument 1>, <argument
2>, ..., <argument n>). The number of arguments can be zero. See Function arguments for the arguments
that can be used in each condition.

• next state

The name of the destination state of the transition.

There can be other columns on this sheet (for use as notes).

If the user utterance type of the transition represented by each line is empty or matches the result of language
understanding, and if the conditions are empty or all of them are satisfied, the condition for the transition is satisfied
and the transition is made to the next state state. In this case, the action described in actions is executed.

Rows with the same state column (transitions with the same source state) are checked to see if they satisfy the transition
conditions, starting with the one written above.

The default transition (a line with both user utterance type and conditions columns empty) must be at the
bottom of the rows having the state column values.

Unless repeat_when_no_available_transitions is True, the default transition is necessary.

5.4. STN Manager (State Transition Network-based Dialogue Management Block) 34

DialBB ver. 1.0 Document, Release v1.0.0

5.4.3 Special status

The following state names are predefined.

• #prep

Preparation state. If this state exists, a transition from this state is attempted when the dialogue begins (when the
client first accesses). The system checks if all conditions in the conditions column of the row with the #prep
value in the state column are met. If they are, the actions in that row’s actions are executed, then the system
transitions to the state in next state, and the system utterance for that state is outputted.

This is used to change the initial system utterance and state according to the situation. The Japanese sample
application changes the content of the greeting depending on the time of the day when the dialogue takes place.

This state is not necessary.

• #initial

Initial state. If there is no #prep state, the dialogue starts from this state when it begins (when the client first
accesses). The system utterance for this state is placed in output_text and returned to the main process.

There must be either #prep or #initial state.

• #error

Moves to this state when an internal error occurs. Generates a system utterance and exits.

A state ID beginning with #final, such as #final_say_bye, indicates a final state. In a final state, the system
generates a system utterance and terminates the dialog.

5.4.4 Conditions and Actions

Context information

STN Manager maintains context information for each dialogue session. The context information is a set of variables
and their values (python dictionary type data), and the values can be any data structure.

Condition and action functions access context information.

The context information is pre-set with the following key-value pairs.

key value
_current_state_name name of the state before transition (string)
_config dictionary type data created by reading configuration file
_block_config The part of the dialog management block in the configuration file (dictionary)
_aux_data aux_data (dictionary) received from main process
_previous_system_utterance previous system utterance (string)
_dialogue_history Dialogue history (list)
_turns_in_state The number of user turns in the current state (integer)

The dialog history is in the following form.

[
{
"speaker": "user",
"utterance": <canonicalized user utterance (string)>

},
(continues on next page)

5.4. STN Manager (State Transition Network-based Dialogue Management Block) 35

DialBB ver. 1.0 Document, Release v1.0.0

(continued from previous page)

{
"speaker": "system",
"utterance": <canonicalized user utterance (string)

},
{
"speaker": "user",
"utterance": <canonicalized user utterance (string)

},
...

]

In addition to these, new key/value pairs can be added within the action function.

Function arguments

The arguments of the functions used in conditions and actions are of the following types.

• Special variables (strings beginning with #)

The following types are available

– #<slot name>

Slot value of the language understanding result of the previous user utterance (the input nlu_result value).
If the slot value is empty, it is an empty string.

– #<key for auxiliary data>

The value of this key in the input aux_data. For example, in the case of #emotion, the value of
aux_data['emotion']. If this key is missing, it is an empty string.

– #sentence

Immediate previous user utterance (canonicalized)

– #user_id

User ID string

• Variables (strings beginning with *)

The value of a variable in context information. It is in the form *<variable name>. The value of a variable
must be a string. If the variable is not in the context information, it is an empty string.

• Variable reference (string beginning with &)

Refers to a context variable in function definitions. It is in the form &<context variable name>

• Constant (string enclosed in "")

It means the string as it is.

5.4. STN Manager (State Transition Network-based Dialogue Management Block) 36

DialBB ver. 1.0 Document, Release v1.0.0

5.4.5 Variables and Function Calls in System Utterances

In system utterances, parts enclosed in { and } are variables or function calls that are replaced by the value of the
variable or the return value of the function call.

Variables that start with # are special variables mentioned above. Other variables are normal variables, which are
supposed to be present in the context information. If these variables do not exist, the variable names are used as is
without replacement.

For function calls, the functions can take arguments explained above as functions used for conditions or actions. The
return value must be a string.

5.4.6 Function Definitions

Functions used in conditions and actions are either built-in to DialBB or defined by the developers.The function used
in a condition returns a boolean value, while the function used in an action returns nothing.

Built-in functions

The built-in functions are as follows:

• Functions used in conditions

– _eq(x, y)

Returns True if x and y are the same.

e.g., _eq(*a, "b") returns True if the value of variable a is "b". _eq(#food, "sandwich"): returns
True if #food slot value is "sandwich".

– _ne(x, y)

Returns True if x and y are not the same.

e.g., _ne(#food, "ramen") returns False if #food slot is "ramen".

– _contains(x, y)

Returns True if x contains y as a string.

e.g., contains(#sentence, "yes") : returns True if the user utterance contains “yes”.

– _not_contains(x, y)

Returns True if x does not contain y as a string.

e.g., _not_contains(#sentence, "yes") returns True if the user utterance contains "yes".

– _member_of(x, y)

Returns True if the list formed by splitting y by ':' contains the string x.

e.g., _member_of(#food, "ramen:fried rice:dumplings")

– _not_member_of(x, y)

e.g., _not_member_of(*favorite_food, "ramen:fried_han:dumpling")

– _num_turns_exceeds(n)

Returns True when the number of user turns exceeds the integer represented by the string n.

e.g.: _num_turns_exceeds("10")

5.4. STN Manager (State Transition Network-based Dialogue Management Block) 37

DialBB ver. 1.0 Document, Release v1.0.0

– _num_turns_in_state_exceeds(n)

Returns True when the number of user turns in the current state exceeds the integer represented by the
string n.

e.g.: _num_turns_in_state_exceeds("5")

– _check_with_llm(task)

Makes the judgment using a large language model. More details follow.

• Functions used in actions

– _set(x, y)

Sets y to the variable x.

e.g., _set(&a, b): sets the value of b to a.

_set(&a, "hello"): sets "hello" to a.

– _set(x, y)

Sets y to the variable x.

e.g., _set(&a, b): sets the value of b to a.

_set(&a, "hello"): sets "hello" to a.

• Functions used in system utterances

– _generate_with_llm(task)

Generates a string using a large language model (currently only OpenAI’s ChatGPT). More details follow.

Built-in functions using large language models

The functions _check_with_llm(task) and _generate_with_llm(task) use a large language model (currently
only OpenAI’s ChatGPT) along with dialogue history to perform condition checks and text generation. Here are some
examples:

• Example of a condition check:

_check_with_llm("Please determine if the user said the reason.")

• Example of text generation:

_generate_with_llm("Generate a sentence to say it's time to end the talk by␣
→˓continuing the conversation in 50 words.")

To use these functions, the following settings are required:

• Set OpenAI’s API key to environment variable OPENAI_API_KEY.

Please check websites and other resources to find out how to obtain an API key from OpenAI.

• Add the following elements to the chatgpt block configuration:

– gpt_model (string)

This specifies the model name of GPT, such as gpt-4o, gpt-4o-mini, etc. The default value is
gpt-4o-mini. gpt-4 cannot be used.

– temperature (float)

This specifies the temperature parameter for GPT. The default value is 0.7.

5.4. STN Manager (State Transition Network-based Dialogue Management Block) 38

DialBB ver. 1.0 Document, Release v1.0.0

– situation (list of strings)

A list that enumerates the scenarios to be written in the GPT prompt. If this element is absent, no specific
situation is specified.

– persona (lis of strings)

A list that enumerates the system persona to be written in the GPT prompt.

If this element is absent, no specific persona is specified.

e.g.:

chatgpt:
gpt_model: gpt-4-turbo
temperature: 0.7
situation:
- You are a dialogue system and chatting with the user.
- You met the user for the first time.
- You and the user are similar in age.
- You and the user talk in a friendly manner.

persona:
- Your name is Yui
- 28 years old
- Female
- You like sweets
- You don't drink alcohol
- A web designer working for an IT company
- Single
- You talk very friendly
- Diplomatic and cheerful

Syntax sugars for built-in functions

Syntax sugars are provided to simplify the description of built-in functions.

• <variable name>==<value>

This means _eq(<variable name>, <value>).

e.g.:

#favorite_sandwich=="chiken salad sandwich"

• <variable name>!=<value>

This means _ne(<variable name>, <value>).

e.g.:

#NE_Person!=""

• <variable name>=<value>

This means _set(&<variable name>, <value>).

e.g.:,

5.4. STN Manager (State Transition Network-based Dialogue Management Block) 39

DialBB ver. 1.0 Document, Release v1.0.0

user_name=#NE_Person

• $<task string>

When used as a condition, it means _check_with_llm(<task string>), and when used in a system utterance
enclosed in {}, it means _generate_with_llm(<task string>).

Example of a condition:

$"Please determine if the user said the reason."

Example of a text generation function call in a system utterance

I understand. {$"Generate a sentence to say it's time to end the talk by continuing␣
→˓the conversation in 50 words" } Thank you for your time.

Function definitions by the developers

When the developer defines functions, he/she edits a file specified in function_definition element in the block
configuration.

def get_ramen_location(ramen: str, variable: str, context: Dict[str, Any]) -> None:
location:str = ramen_map.get(ramen, "Japan")
context[variable] = location

In addition to the arguments used in the scenario, variable of dictionary type must be added to receive context infor-
mation.

All arguments used in the scenario must be strings. In the case of a special variable or variables, the value of the
variable is passed as an argument. In the case of a variable reference, the variable name without the &’ is passed, and
in the case of a constant, the string in "" is passed.

5.4.7 Reaction

In an action function, setting a string to _reaction in the context information will prepend that string to the system’s
response after the state transition.

For example, if the action function _set(&_reaction, "I agree.") is executed and the system’s response in the
subsequent state is “How was the food?”, then the system will return the response “I agree. How was the food?”.

5.4.8 Continuous Transition

If a transition is made to a state where the first system utterance is $skip, the next transition is made immediately
without returning a system response. This is used in cases where the second transition is selected based on the result
of the action of the first transition.

5.4. STN Manager (State Transition Network-based Dialogue Management Block) 40

DialBB ver. 1.0 Document, Release v1.0.0

5.4.9 Dealing with Multiple Language Understanding Results

If the input nlu_result is a list that contains multiple language understanding results, the process is as follows.

Starting from the top of the list, check whether the type value of a candidate language understanding result is equal
to the user utterance type value of one of the possible transitions from the current state, and use the candidate
language understanding result if there is an equal transition. If none of the candidate language comprehension results
meet the above conditions, the first language comprehension result in the list is used.

5.4.10 Subdialogue

If the destination state name is of the form #gosub:<state name1>:<state name2>, it transitions to
the state <state name1> and executes a subdialogue starting there. If the destination state is :exit,
it moves to the state <state name2>. For example, if the destination state name is of the form
#gosub:request_confirmation:confirmed, a subdialogue starting with request_confirmatin is executed, and
when the destination state becomes :exit, it returns to confirmed. When the destination becomes :exit, it returns
to confirmed. It is also possible to transition to a subdialogue within a subdialogue.

5.4.11 Saving Context Information in an External Database

When operating the DialBB application as a web server, using a load balancer to distribute processing across multiple
instances can handle request surges efficiently. By saving context information in an external database (MongoDB), a
single session can be processed by different instances. (Feature added in version 0.10.0)

To use an external database, specify context_db element like the following in the block configuration:

context_db:
host: localhost
port: 27017
user: admin
password: password

Each key is defined as follows:

• host (str)

The hostname where MongoDB is running.

• port (int, default value: 27017)

The port number used to access MongoDB.

• user (str)

The username for accessing MongoDB.

• password (str)

The password for accessing MongoDB.

5.4. STN Manager (State Transition Network-based Dialogue Management Block) 41

DialBB ver. 1.0 Document, Release v1.0.0

5.4.12 Advanced Mechanisms for Handling Speech Input

Additional block configuration parameters

• input_confidence_threshold (float; default value 1.0) If the input is a speech recognition result and its
confidence is less than this value, the confidence is considered low. The confidence of the input is the value of
confidence in aux_data. If there is no confidence key in aux_data, the confidence is considered high. In
the case of low confidence, the process depends on the value of the parameter described below.

• confirmation_request (object)

This is specified in the following form.

confirmation_request:
function_to_generate_utterance: <function name (string)>
acknowledgement_utterance_type: <user utterance type name of acknowledgement␣

→˓(string)>
denial_utterance_type: <name of user utterance type for affirmation (string)>

If this is specified, the function specified in function_to_generate_utterance is executed and the return
value is spoken (called a confirmation request utterance), instead of making a state transition when the input is
less certain. Then, the next process is performed in response to the user’s utterance.

– When the confidence level of the user’s utterance is low, the transition is not made and the previous state
of utterance is repeated.

– If the type of user utterance is specified by acknowledgement_utterance_type, the transition is made
according to the user utterance before the acknowledgement request utterance.

– If the type of user utterance is specified by denial_utterance_type, no transition is made and the utter-
ance in the original state is repeated.

– If the user utterance type is other than that, a normal transition is performed.

However, if the input is a barge-in utterance (aux_data has a barge_in element and its value is True), this
process is not performed.

The function specified by function_to_generate_utterance is defined in the module specified by
function_definitions in the block configuration. The arguments of the function are the nlu_result and
context information of the block’s input. The return value is a string of the system utterance.

• utterance_to_ask_repetition (string)

If it is specified, then when the input confidence is low, no state transition is made and the value of this element
is taken as the system utterance. However, in the case of barge-in (aux_data has a barge_in element and its
value is True), this process is not performed.

confirmation_request and utterance_to_ask_repetition cannot be specified at the same time.

• ignore_out_of_context_barge_in (Boolean; default value is False).

If this value is True, the input is a barge-in utterance (the value of barge_in in the aux_data of the request
is True), the conditions for a transition other than the default transition are not met (i.e. the input is not ex-
pected in the scenario), or the confidence level of the input is low the transition is not made. In this case, the
barge_in_ignored of the response aux_data is set to True.

• reaction_to_silence (object)

It has an action element. The value of the action element is a string that can be either repeat or transition.
If the value of the action element is "transition", the "destination" element is required. The value of
the destination key is a string.

5.4. STN Manager (State Transition Network-based Dialogue Management Block) 42

DialBB ver. 1.0 Document, Release v1.0.0

If the input aux_data has a long_silence key and its value is True, and if the conditions for a transition other
than the default transition are not met, then it behaves as follows, depending on this parameter:

– If this parameter is not specified, normal state transitions are performed.

– If the value of action is "repeat", the previous system utterance is repeated without state transition.

– If the value of action is "transition", then the transition is made to the state specified by destination.

Adding built-in condition functions

The following built-in condition functions have been added

• _confidence_is_low()

Returns True if the value of confidence in the input aux_data is less than or equal to the value of
input_confidence_threshold in the configuration.

• _is_long_silence()

Returns True if the value of long_silence in the input’s aux_data is True.

Ignoring the last incorrect input

If the value of rewind in the input aux_data is True, a transition is made from the state before the last response. Any
changes to the dialog context due to actions taken during the previous response will also be undone. This function is
used when a user utterance is accidentally split in the middle during speech recognition and only the first half of the
utterance is responded to.

Note that the context information is reverted, but not if you have changed the value of a global variable in an action
function or the contents of an external database.

5.5 ChatGPT Dialogue (ChatGPT-based Dialogue Block)

(Changed in ver0.7)

(dialbb.builtin_blocks.chatgpt.chatgpt.ChatGPT)

Engages in dialogue using OpenAI’s ChatGPT.

5.5.1 Input/Output

• Input

– user_utterance: Input string (string)

– aux_data: Auxiliary data (dictionary).

– user_id: auxiliary data (dictionary)

• Output

– system_utterance: Input string (string)

– aux_data: auxiliary data (dictionary type)

– final: boolean flag indicating whether the dialog is finished or not.

5.5. ChatGPT Dialogue (ChatGPT-based Dialogue Block) 43

DialBB ver. 1.0 Document, Release v1.0.0

The inputs aux_data and user_id are not used. The output aux_data is the same as the input aux_data and final
is always False.

When using these blocks, you need to set the OpenAI license key in the environment variable OPENAI_API_KEY.

5.5.2 Block Configuration Parameters

• first_system_utterance (string, default value is "")

This is the first system utterance of the dialog.

• user_name (string, default value is "User")

This is used for the ChatGPT prompt. It is explained below.

• system_name (string, default value is "System")

This is used for the ChatGPT prompt. It is explained below.

• prompt_template (string)

This specifies the prompt template file as a relative path from the configuration file directory.

A prompt template is a template of prompts for making ChatGPT generate a system utterance, and it can contain
the following variables starting with @.

– @dialogue_history Dialogue history. This is replaced by a string in the following form:

<The value of system_name in the block configuration>: <system utterance>
<The value of user_name in the block configuration>: <user utterance>
<The value of system_name in the block configuration>: <system utterance>
<The value of user_name in the block configuration>: <user utterance>
...
<The value of system_name in the block configuration>: <system utterance>
<The value of user_name in the block configuration>: <user utterance>

• gpt_model (string, default value is gpt-4o-mini)

Open AI GPT model. You can specify gpt-4o, gpt-4o-mini and so on.

5.5.3 Process Details

• At the beginning of the dialog, the value of first_system_utterance in the block configuration is returned
as system utterance.

• In the second and subsequent turns, the prompt template in which @dialogue_history is replace by the dia-
logue histor is given to ChatGPT and the returned string is returned as the system utterance.

5.5. ChatGPT Dialogue (ChatGPT-based Dialogue Block) 44

DialBB ver. 1.0 Document, Release v1.0.0

5.6 ChatGPT NER (Named Entity Recognition Block Using ChatGPT)

(dialbb.builtin_blocks.ner_with_chatgpt.chatgpt_ner.NER)

This block utilizes OpenAI’s ChatGPT to perform named entity recognition (NER).

If the language element in the configuration is set to ja, it extracts named entities in Japanese. If set to en, it extracts
named entities in English.

At startup, this block reads named entity knowledge from an Excel file, converts it into a list of named entity classes,
descriptions for each class, examples of named entities in each class, and extraction examples (few-shot examples), and
embeds them into the prompt.

During execution, the input utterance is added to the prompt, and ChatGPT is used for named entity extraction.

5.6.1 Input and Output

• Input

– input_text: Input string

– aux_data: auxiliary data (dictionary)

• Output

– aux_data: Auxiliary data (dictionary format)

The named entity extraction results are added to the provided aux_data.

The extracted named entities follow this format:

{"NE_<Label>": "<Named Entity>", "NE_<Label>": "<Named Entity>", ...}

<Label> represents the named entity class. The named entity is the recognized phrase found in
input_text. If multiple entities of the same class are found, they are concatenated with :.

Example:

{"NE_Person": "John:Mary", "NE_Dish": "Chicken Marsala"}

5.6.2 Block Configuration Parameters

• knowledge_file (String)

Specifies the Excel file containing named entity knowledge. The file path should be relative to the directory
where the configuration file is located.

• flags_to_use (List of strings)

If any of these values are present in the flag column of each sheet, the corresponding row will be loaded. If this
parameter is not set, all rows will be loaded.

• knowledge_google_sheet (Hash)

Information for using Google Sheets instead of Excel.

– sheet_id (String)

The ID of the Google Sheet.

5.6. ChatGPT NER (Named Entity Recognition Block Using ChatGPT) 45

DialBB ver. 1.0 Document, Release v1.0.0

– key_file (String)

Specifies the key file for accessing the Google Sheet API. The file path should be relative to the configuration
file directory.

• gpt_model (String, default: gpt-4o-mini)

Specifies the ChatGPT model. Options include gpt-4o, etc.

• prompt_template

Specifies the file containing the prompt template, relative to the configuration file directory.

If not specified, the default templates dialbb.builtin_blocks.ner_with_chatgpt.chatgpt_ner.
prompt_template_ja.PROMPT_TEMPLATE_JA (for Japanese) or dialbb.builtin_blocks.
ner_with_chatgpt.chatgpt_ner.prompt_template_en.PROMPT_TEMPLATE_EN (for English) will
be used.

The prompt template defines how ChatGPT is instructed for language understanding and includes the following
variables (prefixed with @):

– @classes List of named entity classes.

– @class_explanations Descriptions of each named entity class.

– @ne_examples Examples of named entities for each class.

– @ner_examples Examples of utterances and their correct named entity extraction results (few-shot exam-
ples).

– @input The input utterance.

Values are assigned to these variables at runtime.

5.6.3 Named Entity Knowledge

Named entity knowledge consists of the following two sheets:

Sheet Name Description
utterances Examples of utterances and named entity extraction results.
classes Relationship between slots and entities, along with a list of synonyms.

Although the sheet names can be changed in the block configuration, this is rarely needed, so detailed explanations are
omitted.

utterances Sheet

Each row consists of the following columns:

• flag

A flag to determine whether to use the row. Common values include Y (yes) and T (test). The configuration
specifies which flags to use.

• utterance

Example utterance.

• entities

Named entities contained in the utterance. They are formatted as follows:

5.6. ChatGPT NER (Named Entity Recognition Block Using ChatGPT) 46

DialBB ver. 1.0 Document, Release v1.0.0

<Named Entity Class>=<Named Entity>, <Named Entity Class>=<Named Entity>, ...
→˓<Named Entity Class>=<Named Entity>

Example:

Person=John, Location=Chicago

Additional columns besides these are allowed in the sheets used by this block.

classes Sheet

Each row consists of the following columns:

• flag

Same as in the utterances sheet.

• class

Named entity class name.

• explanation

Description of the named entity class.

• examples

Examples of named entities, concatenated with ','.

5.7 spaCy-Based NER (Named Entity Recognizer Block using spaCy)

(dialbb.builtin_blocks.ner_with_spacy.ne_recognizer.SpaCyNER)

Performs named entity recognition using spaCy and GiNZA.

5.7.1 Input/Output

• Input

– input_text: Input string (string)

– aux_data: auxiliary data (dictionary)

• Output

– aux_data: auxiliary data (dictionary)

The inputted aux_data plus the named entity recognition results.

The result of named entity recognition is as follows.

{
"NE_<label>": "<named entity>",
"NE_<label>": "<named entity>",
...

}

5.7. spaCy-Based NER (Named Entity Recognizer Block using spaCy) 47

https://spacy.io
https://megagonlabs.github.io/ginza/

DialBB ver. 1.0 Document, Release v1.0.0

<label> is the class of named entities. <named entity> is a found named entity, a substring of ``input_text. If
multiple named entities of the same class are found, they are concatenated with ‘:’`.

Example:

{
"NE_Person": "John:Mary",
"NE_Dish": "Chiken Marsala"

}

See the spaCy/GiNZA model website for more information on the class of named entities.

• ja-ginza-electra (5.1.2): https://pypi.org/project/ja-ginza-electra/

• en_core_web_trf (3.5.0): https://spacy.io/models/en#en_core_web_trf-labels

5.7.2 Block Configuration Parameters

• model (String: Required)

The name of the spaCy/GiNZA model. It can be ja_ginza_electra (Japanese), en_core_web_trf (English),
etc.

• patterns (object; Optional)

Describes a rule-based named entity extraction pattern. The pattern is a YAML format of the one described in
spaCy Pattern Description.

The following is an example.

patterns:
- label: Date
pattern: yesterday

- label: Date
pattern: The day before yesterday

5.7.3 Process Details

Extracts the named entities in input_text using spaCy/GiNZA and returns the result in aux_data.

5.7. spaCy-Based NER (Named Entity Recognizer Block using spaCy) 48

https://pypi.org/project/ja-ginza-electra/
https://huggingface.co/spacy/en_core_web_trfhttps://pypi.org/project/ja-ginza-electra/
https://spacy.io/usage/rule-based-matching

CHAPTER

SIX

APPENDIX

6.1 Frontend

DialBB comes with two sample frontends for accessing the Web API.

6.1.1 Simple Frontend

You can access it at:

http://<host>:<port>

This frontend displays system and user utterances in speech bubbles.

It does not allow sending aux_data.

Information other than the system utterance included in the response is not displayed.

6.1.2 Debug Frontend

You can access it at:

http://<host>:<port>/test

This frontend displays system and user utterances in a list format.

It allows sending aux_data.

The aux_data included in the response is also displayed.

6.2 How to Use DialBB without Installing via pip

First, clone the GitHub repository. The cloned directory will be referred to as <DialBB Directory>.

git clone git@github.com:c4a-ri/dialbb.git <DialBB Directory>

Set the environment variable PYTHONPATH:

export PYTHONPATH=<DialBB Directory>:$PYTHONPATH

49

DialBB ver. 1.0 Document, Release v1.0.0

6.2.1 Using the Class API

If you want to use DialBB via the class API, start Python and import the necessary modules or classes from dialbb:

from dialbb.main import DialogueProcessor

6.2.2 Using the Web API

To use DialBB as a Web API, specify the configuration file and start the server:

$ python <DialBB Directory>/run_server.py [--port <port>] <config file>

The default port (port number) is 8080.

6.3 Discontinued Features

6.3.1 Snips Understander Built-in Block

As Snips has become challenging to install with Python 3.9 and above, it was discontinued in version 0.9. Please use
the LR-CRF Understander built-in block as an alternative.

6.3.2 Whitespace Tokenizer and Sudachi Tokenizer Built-in Blocks

These blocks were discontinued in version 0.9. If you use LR-CRF Understander or ChatGPT Understander, there is
no need for the Tokenizer blocks.

6.3.3 Snips+STN Sample Application

This sample application was discontinued in version 0.9.

6.3. Discontinued Features 50

	Introduction
	DialBB Overview
	Tutorial
	Introduction
	Parrot Sample Application
	Description
	Debug Mode

	ChatGPT Dialogue Application
	Description
	Creating an Application Using the ChatGPT Application

	Simple Application
	System Architecture
	Files Comprising the Application
	LR-CRF Understander Block
	Language Understanding Result
	NLU Knowledge
	Construction and Use of Language Understanding Models

	STN Manager Block
	Overview
	Scenario Description
	Conditions
	Actions
	Summary of Transition Description
	Special State Names
	Scenario Graph

	Utilizing N-Best Language Understanding Results
	Building an Application Using a Simple Application Structure
	Overview
	Files to Modify

	Lab Application
	Overview
	Files Comprising the Application
	ChatGPT Language Understanding Block
	ChatGPT Named Entity Recognition (NER) Block
	Named Entity Recognition Knowledge

	Functions of the STN Manager
	Function Calls and Special Variable References in System Utterances
	Syntax Sugar
	Reaction Utterance Generation
	Utterance Generation and Condition Evaluation Using ChatGPT
	Sub-dialogue
	Skip Transition
	Repeat Function
	Handling Voice Input

	Framework Specifications
	Input and Output
	The DialogueProcessor Class
	Request
	At the start of the session
	After the session starts

	Response

	WebAPI
	Server Startup
	Connection from Client (At the Start of a Session)
	Connection from Client (After the Session Started)

	Configuration
	How to make your own blocks
	Methods to be Implemented
	Available Variables
	Available Methods

	Debug Mode
	Test Using Test Scenarios

	Built-in Block Classes
	Simple Canonicalizer (Simple String Canonicalizer Block)
	Input/Output
	Process Details

	LR-CRF Understander (Language Understanding Block using Logistic Regression and Conditional Random Fields)
	Input/Output
	Block Configuration Parameters
	Language Understanding Knowledge
	utterances sheet
	slots sheet

	ChatGPT Understander (Language Understanding Block using ChatGPT)
	Input/Output
	Block Configuration Parameters
	Language Understanding Knowledge

	STN Manager (State Transition Network-based Dialogue Management Block)
	Block configuration parameters
	Dialogue Management Knowledge Description
	Special status
	Conditions and Actions
	Context information
	Function arguments

	Variables and Function Calls in System Utterances
	Function Definitions
	Built-in functions
	Built-in functions using large language models
	Syntax sugars for built-in functions
	Function definitions by the developers

	Reaction
	Continuous Transition
	Dealing with Multiple Language Understanding Results
	Subdialogue
	Saving Context Information in an External Database
	Advanced Mechanisms for Handling Speech Input
	Additional block configuration parameters
	Adding built-in condition functions
	Ignoring the last incorrect input

	ChatGPT Dialogue (ChatGPT-based Dialogue Block)
	Input/Output
	Block Configuration Parameters
	Process Details

	ChatGPT NER (Named Entity Recognition Block Using ChatGPT)
	Input and Output
	Block Configuration Parameters
	Named Entity Knowledge
	utterances Sheet
	classes Sheet

	spaCy-Based NER (Named Entity Recognizer Block using spaCy)
	Input/Output
	Block Configuration Parameters
	Process Details

	Appendix
	Frontend
	Simple Frontend
	Debug Frontend

	How to Use DialBB without Installing via pip
	Using the Class API
	Using the Web API

	Discontinued Features
	Snips Understander Built-in Block
	Whitespace Tokenizer and Sudachi Tokenizer Built-in Blocks
	Snips+STN Sample Application

